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(-)-Histrionicotoxin 1 (HTX), the archetype of a group of
spiropiperidine-containing alkaloids from the brightly colored
poison-arrow frogDendrobates histrionicus, was isolated and
characterized by Daly, Witkop, and co-workers.1 HTX and its
analogues have generated considerable pharmacological interest
as noncompetitive inhibitors of the nicotinic acetylcholine recep-
tors and as probes to study neuromuscular signal transmission,2,3

but an ever-diminishing supply of the natural material demands
that total synthesis provide an alternative source. Indeed, a number
of syntheses of the simpler perhydrohistrionicotoxin have now
been reported,4 but only two successful syntheses of the unsatur-
ated parent molecule have been published,5,6 the latter being
enantioselective.

We report a new synthesis of (-)-HTX 1 using a sequence of
intramolecular pericyclic processes (Scheme 1); first, a hydroxyl-
amine-alkyne cyclization7,8 of 2 is used to prepare the nitrone3
which is intercepted by an intramolecular [3+ 2] cycloaddition
to afford4, the core ring system of HTX1. Thus, in a single step
the sole stereocenter in2 directs formation of the three new chiral
centers in the product. The dipolar cycloaddition approach has
been explored previously on a number of occasions,9-11 but all
attempts at its implementation using a variety of substituted olefins
and nitrones have invariably given the alternative regioisomer.12-16

This has been attributed to unfavorable steric constraints in the
transition state. In this work the required regiocontrol in the
intramolecular [3+ 2] cycloaddition has in part been realized by
the use of anR,â-unsaturated nitrile.

The acetylenic diol5 was prepared by reaction of 1-benzyloxy-
5-iodopentane17 and the lithio derivative of 5-tert-butyldiphenyl-
silyloxy-1-pentyne (Scheme 2).18 Debenzylation,19 oxidation of
the resulting alcohol to the acid6, and incorporation of (1R)-
(+)-2,10-camphorsultam via a mixed anhydride method afforded
the acyl sultam7. Oppolzer’s methodology20 was then exploited
to introduce a hydroxylamine group diastereoselectively. Thus,
reaction of the sodium enolate derived from7 with 1-chloro-1-
nitrosocyclohexane followed by mineral acid hydrolysis afforded
the hydroxylamine8 as a single diastereomer. The intramolecular
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Scheme 1.Retrosynthetic Analysis of Histrionicotoxin 1

Scheme 2.Synthesis of Histrionicotoxin 1a

a (a) BCl3‚DMS, CH2Cl2, 97%; (b) Jones reagent, acetone, 98%; (c)
NEt3, pivaloyl chloride, 0°C then (1R)-(+)-10,2-camphorsultam,n-BuLi,
THF, -78 °C, 84%; (d) NaN(TMS)2, 1-chloro-1-nitrosocyclohexane,
THF, then HCl (aq), 70%; (e) toluene, 80°C, 6 h; (f) styrene, 75°C,
85% (2 steps); (g) LiAlH4, THF, 0 °C; (h) NaH, BnBr, THF, 90% (2
steps); (i) HF, CH3CN, 91%; (j) TPAP, NMO, 4 Å sieves, 98%; (k)
Me3SiCH2CN, n-BuLi, THF, -78 °C, B(OiPr)3, 87% (E:Z 10:90
increasing to 8:92 with HMPA); (l) toluene, sealed tube, 190°C, 3.5 h,
80%; (m) BCl3‚DMS, CH2Cl2, 99%; (n) methanesulfonyl chloride, NEt3,
DMAP, CH2Cl2, 100%; (o) NaCN, DMSO, 4 Å sieves, 55°C, 85%; (p)
DIBAL-H, toluene,-78 °C, 100%; (q) KN(TMS)2, [Ph3PCH2I]+I-, THF,
-78 °C, 95%; (r) Pd(PPh3)4, CuI, Et2NH, Me3Si-C≡CH, 92%; (s) Zn,
AcOH, 30 min, 98%; (t) K2CO3, MeOH, 94%.
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hydroxylamine-alkyne cyclization7,8 then gave the nitrone9
which was immediately masked by styrene cycloaddition, afford-
ing the isoxazolidine10 as a single regio- and diastereomer.21

Reductive removal of the chiral auxiliary22 and benzylation of
the resulting alcohol followed by desilylation and oxidation
afforded an aldehyde which was converted into the (Z)-R,â-
unsaturated nitrile11 by Yamamoto’s23 version of the Petersen
olefination.

After considerable experimentation it was found that the adduct
11, when heated at 190°C in toluene in a sealed tube for 3.5 h,
lost styrene and formed the required dipolar cycloadduct13 in
consistently high yield (78-82%). The almost exclusive formation
of a single regioisomer (established by NMR spectroscopy and
the X-ray structure of a later intermediate) through the presumed
intermediacy of the nitrone12 is a remarkable outcome. First,
three new chiral centers necessary for the natural product have
been created with extraordinary efficiency, and second, the
regiochemistry is contrary to that observed with a number of
closely related examples.9,10,12-16

The result is difficult to explain but may be a consequence of
a different pathway not involving the nitrone12 directly.24 This
is under investigation.

The (Z)-enyne side chains were elaborated using Stork’s
iodophosphorane to preparecis-iodo-alkenes.6 Conversion of14
via the mesylate into the crystalline bis-nitrile15 allowed the
side chains to be processed in parallel. DIBAL-H reduction of
the nitrile groups gave the corresponding bis-aldehyde16
quantitatively; this was converted in a modified Stork-Wittig
procedure25 into the bis-iodoalkene17and thence to the bis-enyne
18, using a Pd(0)/Cu(I)-mediated coupling26 with (trimethylsilyl)-
acetylene.27

Reduction of the strained N-O bond using activated zinc dust
in glacial acetic acid28 proceeded efficiently to afford bis-
(trimethylsilyl)-HTX 19which was deprotected to give the natural
product [R]20

D -112° (c, 0.34, EtOH), the spectra (1H and 13C
NMR) of which were identical to those reported in the data.1,6

On storage at-15 °C crystals (mp 75-76 °C) slowly formed

that were suitable for X-ray analysis, which served to confirm
the structure of the synthetic histrionicotoxin (Figure 1).29

In summary an enantioselective synthesis of (-)-HTX from
5-TBDPSO-1-pentyne in 16% overall yield is described using
an intramolecular [3+ 2] cycloaddition to construct the core ring
system. Furthermore, conversion of17 into the bis-vinyl deriva-
tive, HTX-235A (Scheme 3), demonstrates the potential of this
intermediate to serve as a common precursor of the other members
of the HTX family and to offer a realistic alternative source for
these biologically important natural products.
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Figure 1. The X-ray structure (Chem 3D representation) of synthetic
(-)-histrionicotoxin1.

Scheme 3

Communications to the Editor J. Am. Chem. Soc., Vol. 121, No. 20, 19994901


